

UPPSALA UNIVERSITET

PKPD Modeling of VEGF, sVEGFR-2, sVEGFR-3 and sKIT as Biomarkers of Tumor Response and Overall Survival Following Sunitinib Treatment in GIST

Emma K. Hansson¹, Paul Westwood¹, Michael Amantea², Jonathan French², Brett Houk², Peter A. Milligan², Mats O. Karlsson¹, Lena E. Friberg¹

¹Department of Pharmaceutical Biosciences, Uppsala University, Sweden ²Pfizer Global R&D

PAGE 2011 June 9

Introduction

Selection of an optimal dose in the area of targeted drugs in oncology is a challenge.

A characterized **Exposure - biomarker - response** relationship may:

- Enable dose optimization
- Facilitate prediction and monitoring of clinical response
- Provide an understanding of the mechanism of action
- Act as an early indicator of safety issues
- Improve efficiency of clinical trials (surrogate endpoint)

UNIVERSITET Sutent® - sunitinib malate

Multi targeted inhibition of receptor tyrosine kinases on tumor cells, pericytes and endothelial cells results in anti-angiogenesis and reversal of tumor growth

To investigate **Exposure-Response Relationships** following sunitinib (Sutent[®]) treatment in imatinib-resistant GIST (gastro intestinal stromal tumors) with focus on the potential biomarkers **VEGF**, **sVEGFR-2**, **sVEGFR-3** and **sKIT**

- Are the factors predictive of tumor size dynamics?
- Are the factors predictive of overall survival?

Introduction

Sunitinib data

Indication	Imatinib-resistant or intolerant GIST
n	300
Studies	4 phase I to phase III studies ¹⁻⁴
Dose (mg)	0, 25, 37.5, 50, 75 qd
Schedule (weeks on/off treatment)	4/2, 2/1, 2/2 and continuous treatment
PK	Individual PK parameters ⁵
Biomarker sampling (cycle:day)	1:0, 1:14, 1:28; 2:1, 2:28; 3:1, 3:28 etc
Tumor assessment (cycle:day)	1:0, 1:28; 2:28; 3:28 etc

UPPSALA UNIVERSITET VEGF sVEGFR-3 Dose Conc. sVEGFR-2 sKIT

Biomarker model

 UPPSALA
 Results

 Diversitet
 Biomarker models

 Inhibition

$$K_{out}$$
 $\frac{dBM}{dt} = K_{in} - K_{out} \left(1 - \frac{I_{max} \cdot C}{IC_{so} + C}\right) \cdot BM$
 Inhibition
 K_{in}
 $\frac{dBM}{dt} = K_{in} \left(1 - \frac{I_{max} \cdot C}{IC_{so} + C}\right) - K_{out} \cdot BM$

 Linear DP
 DP(t) = Base $\cdot (1 + DP_{depe} \cdot t)$
 $K_{in} = DP(t) \cdot K_{out}$

	VEG	<u>iF</u>	<u>sVEGF</u>	R-2	<u>sVEGF</u>	<u>R-3</u>	<u>sKIT</u>	
Parameter	Estimate	% IIV	Estimate	% IIV	Estimate	% IIV	Estimate	% IIV
Base (pg/mL)	59.8	50	8660	19	63900	43	39200	50
MRT (days)	3.75	24	23.1	24	16.7	24	101	27
l _{max}	1 FIX	-	1 FIX	-	1 FIX	-	1 FIX	-
IC ₅₀ (mg/L)	0.042	50	0.042	43	0.042	63	0.042	240
Y	3.31	-	1.54	-	-	-	-	-
DP _{slope} (month ⁻¹)	0.026	171	-	-	-	-	0.026	172
Res Error (%)	45	-	12	-	22	-	23	-
Res Error (pg/mL)	-	-	583	-	-	-	-	-

IC _50 correlations: VEGF, sVEGFR-2, sVEGFR-3 75-90 %

DP = Disease progression, MRT = Mean Residence Time = $1/K_{out}$

Biomarker model

UPPSALA UNIVERSITET

Biomarker Model Predictions

DP = Disease progression

VPC Biomarker Model

UNIVERSITET n simulations = 500

Confidence intervals for the simulated data's 5th,50th and 95th percentiles

50th percentile of the observed data

— — 5th and 95th percentiles of the observed data

UPPSALA UNIVERSITET Tumor growth inhibition model⁶

Tumor growth rateCell kill rate
$$\frac{dy(t)}{dt} = K_G \cdot y(t) - (K_{Drug} \cdot AUC_{ss_{0-24}} + K_{BM} \cdot BM_{REL}) \cdot R(t) \cdot y(t)$$
 $R(t) = e^{-\lambda t}$

$$BM_{REL} = \frac{BM(t) - Base}{Base}$$

$$\begin{array}{ll} \mathsf{K}_{\mathsf{G}} &= \mathsf{tumor} \; \mathsf{growth} \; \mathsf{rate} \; (\mathsf{week}^{-1}) \\ \mathsf{K}_{\mathsf{Drug}} &= \mathsf{tumor} \; \mathsf{size} \; \mathsf{reduction} \; \mathsf{rate} \; (\mathsf{AUC}^{-1} \; \mathsf{week}^{-1}) \\ \mathsf{K}_{\mathsf{BM}} &= \mathsf{tumor} \; \mathsf{size} \; \mathsf{reduction} \; \mathsf{rate} \; (\mathsf{week}^{-1}) \\ \lambda &= \mathsf{rate} \; \mathsf{constant} \; \mathsf{of} \; \mathsf{resistance} \; \mathsf{appearance} \; (\mathsf{week}^{-1}) \end{array}$$

[6] Claret L. et al. JCO. 2009:27, 4103-4108 [7] Dansirikul et al J Pharmacokinet Pharmacodyn 2008

Tumor model

Results

Parameter	Estimate	RSE (%)	IIV (CV %)	RSE (%)
K _G (week ⁻¹)	0.012	10	54	19
K _{Drug} (week ⁻¹ x AUC ⁻¹)	0.0050	40	119	12
K _{sKIT} (week ⁻¹)	-0.0028	14	243	16
K _{svegr3} (week ⁻¹)	-0.037	21	-	-
λ (week ⁻¹)	0.022	27	-	-
Res error (%)	13	9.7	-	-

UPPSALA UNIVERSITET

VPC Tumor model

n simulations = 500

- Confidence intervals for the simulated data's 5th,50th and 95th percentiles
- ----- 50th percentile of the observed data
- **- -** 5th and 95th percentiles of the observed data

Drop out, dependent on progressive disease, tumor size and time, was taken into account in the simulations

Survival model

UPPSALA NIVERSITET Survival model

Data: n = 300 163 events (54 %)

Parametric survival model (exponential, weibull, gompertz, log-logistic)

Time varying predictors

Constant predictors

Biomarker time courses and tumor size were extrapolated until time of death /censoring

UPPSALA UNIVERSITET Survival model

Final survial model:

Results

Weibull distribution

BM _{REL}	sveger-3 response	e↓h(t)
 Baseline tumor size 	t baseline	† h(t)

Parameter	Estimate	RSE (%)
λ(week ⁻¹)	0.0059	47
α	1.2	7
θ_1 sVEGFR-3	-3.8	16
θ₂ Tumor baseline (mm)	-0.0024	28

Simulations Survival model

n simulations = 200
Kaplan-Meier plot of observed data
95 % prediction intervals of the Kaplan-Meier plot

Random censoring was assumed

Simulations Survival model UPPSALA UNIVERSITET **Below median** Above median Survival % Survival % Baseline tumor size Time (weeks after first treatment) Time (weeks after first treatment) 80 Survival % Survival % **VEGFR-3** Time (weeks after first treatment) Time (weeks after first treatment)

n simulations = 200
Kaplan-Meier plot of observed data
95 % prediction intervals of the Kaplan-Meier plot

Survival model

n simulations = 200Kaplan-Meier plot of observed data 95 % prediction intervals of the Kaplan-Meier plot

sKIT has previously been reported as a biomarker of time to progression and overall survival based on results from a traditional statistical analysis⁹.

The developed modeling framework allowed integration of the whole biomarker time course and the response, thereby enabling identification of other biomarker relationships.

The developed modeling framework allowed integration of the whole biomarker time course and the response.

The identified relationships indicate a potential use of **sKIT**, **sVEGFR-3** and **tumor baseline** as biomarkers of treatment response.

sKIT could be hypothesized to be a marker for the inhibitory effect of sunitinib on KIT and sVEGFR-3 for the anti-angiogenic activity.

Acknowledgements

- Pfizer Itd
- Swedish Cancer Society